Beter bestralingsplan voor hoofd- en halskanker dankzij artificiële intelligentie

De behandeling van hoofd- en halskanker vraagt een gedetailleerde aanduiding op CT-beelden van de weefsels die wel of juist niet bestraald mogen worden. Vroeger moesten artsen dat manueel doen, wat tijdsintensief was en tot veel variatie leidde. Daarom gebruiken artsen in UZ Leuven voortaan een slim algoritme dat de klus grotendeels overneemt.

Een van de meest complexe en veelvoorkomende vormen van kanker die behandeld worden op de bestralingsafdeling is hoofd- en halskanker. De bestraling moet gericht gebeuren om de omgevende gezonde weefsels, zoals speekselklieren, slikspieren en het ruggenmerg, zo veel mogelijk te sparen. Daarvoor moeten de risico-organen nauwkeurig aangeduid of ‘ingetekend’ worden op CT-beelden.

Veel variatie tussen artsen

Tot voor kort moesten radiotherapeut-oncologen die intekeningen manueel doen, wat heel wat tijd kostte. Bovendien leidde dat tot veel individuele variatie: artsen deden het te vaak op een verschillende manier. Uit een studie waarbij aan alle Belgische radiotherapeutische afdelingen gevraagd werd om op dezelfde set beelden de risico-organen aan te duiden, bleek dat er ook grote verschillen zijn tussen de bestralingscentra, hoewel ze vrijwel identieke richtlijnen volgden.

Samenwerking met ingenieurs

Prof. dr. Sandra Nuyts, radiotherapeut-oncoloog in UZ Leuven, zocht daarom samen met de medische fysici naar manieren om het proces te automatiseren. Commerciële oplossingen bleken niet zo succesvol, dus besloten ze de krachten te bundelen met ingenieurs onder leiding van prof. Frederik Maes van het Medical Imaging Research Center (MIRC) van UZ Leuven en KU Leuven. Samen bouwden ze een nieuwe tool gebaseerd op deep learning, een vorm van artificiële intelligentie die erg geschikt is voor het vinden van patronen in grote datasets van beelden. Het algoritme werd eerst grondig getest en geoptimaliseerd in het labo en vervolgens ingepast in de klinische omgeving.

Professor Nuyts: “We lieten twee ervaren radiotherapeut-oncologen een set beelden manueel intekenen. Daarnaast keken ze ook de versie gegenereerd door het algoritme na en verbeterden die waar nodig. De aanpak mét het algoritme was zo’n 33 procent sneller en consequenter.”

Enorme meerwaarde

Ondertussen wordt het computermodel dagelijks in de praktijk gebruikt. De artsen kijken de resultaten voor de zekerheid altijd na, maar hebben nog nooit grote afwijkingen gezien. Professor Nuyts: “Het computermodel biedt een enorme meerwaarde: het geeft ons een consequenter bestralingsplan en meer tijd voor echte patiëntenzorg. Momenteel onderzoeken we of we het verder kunnen uitbreiden voor intekeningen bij andere vormen van kanker.”

De succesvolle ontwikkelingwas enkel mogelijk dankzij een intensieve samenwerking tussen artsen, medische fysici en ingenieurs. Professor Maes: “Het MIRC zet volop in op AI-onderzoek om nog meer gelijkaardige toepassingen uit te werken en in de kliniek te introduceren”.

Als je regelmatig en graag goed nieuws leest, dan is nu een goed moment om ons te steunen. Goed Nieuws is gratis toegankelijk voor iedereen en wordt gefinancierd door lezers. Elke bijdrage, hoe groot of klein ook, geeft voeding aan onze journalistiek en verzekert de toekomst van goednieuws.be. Steun Goed Nieuws al vanaf 1 euro – het duurt maar een minuutje. Dank je.

Een reactie achterlaten

Je e-mailadres zal niet getoond worden. Vereiste velden zijn gemarkeerd met *

Recente berichten

Schrijf je in voor de nieuwsbrief

Jouw logo hier?

Goed Nieuws werkt op basis van vrijwilligers. Om onze kosten te dekken, zijn wij op zoek naar sponsors.

Herken je jezelf in de visie van Goed Nieuws en wil je sponsor worden? Neem dan contact met ons op.

Meer
berichten